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Excitons and Optical Properties of a-Quartz
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We present an ab initio study of the optical properties of a-quartz. The absorption spectrum is cal-
culated by solving the Bethe-Salpeter equation for the interacting electron-hole system and found to be
in excellent agreement with the measured spectrum up to 10 eV above the absorption threshold. We
find that excitonic effects are crucial in understanding the sharp features in the absorption spectrum in
this energy range. They are also crucial in the ab initio computation of the static dielectric constant,
significantly enhancing its value.

PACS numbers: 78.20.Ci, 71.35.Cc
The optical, electronic, and structural properties of
quartz have been measured and studied extensively by
experimentalists. In particular, Philipp [1] has performed
measurements of the reflectance of light normal to the
surface of quartz in an energy range from 0 to 30 eV.
The measured optical absorption shows four sharp and
distinct peaks at energies of 10.3, 11.7, 14.0, and 17.3 eV,
respectively. In the past thirty years, many theoretical
studies [2–5] have been done in an attempt to explain
the origin of these peaks. These studies considered either
interband transitions alone or excitonic formation within a
model Hamiltonian approach. In the interband theory, the
optical absorption is computed using Fermi’s golden rule
and neglecting the electron-hole interaction. Chelikowsky
and Schluter [2] used the interband theory approach with
an empirical band structure. Xu and Ching [3] used the
same approach, but calculated the band structure within
the local density approximation (LDA). According to the
interband transition picture, only the first peak is attributed
to excitons whereas the other higher peaks arise from Van
Hove singularities in the joint density of states (JDOS),
enhanced by matrix element effects. In the model exciton
approach of Pantelides [4] and Laughlin [5], the optical
absorption spectrum of a-quartz is computed using a
tight-binding Hamiltonian and an approximate form for
the two-particle Green’s function. According to the
former study, only the first two peaks are excitonic in
nature, whereas in the latter study all four peaks are found
to be excitonic in nature.

In this work, we go beyond the previous studies by us-
ing accurate ab initio methods at all stages of the calcu-
lation of the optical absorption, including the calculation
of the quasiparticle band structure and the electron-hole
interaction. Such an approach not only provides us with
a more accurate optical spectrum calculated without us-
ing adjustable parameters and without making a priori as-
sumptions about the nature of the peaks, but also gives us
additional information about the physical and spatial na-
ture of the excitons in the system, thereby deepening our
0031-9007�00�85(12)�2613(4)$15.00 ©
understanding of the optical excitations in this technologi-
cally important material.

The theoretical method used in this work is based on the
approach developed by Rohlfing and Louie [6], which has
been applied successfully to the optical absorption spec-
trum of a wide variety of semiconductors and insulators,
including surfaces, clusters, and polymer systems [7,8].
Similar approaches with different methods have been used
by others to investigate the optical properties of solids
[9,10].

In the calculation, the relevant electron-hole excited
states are described approximately by the following many-
body wave function:
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Acyka
y
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where jE� and jG� are the excited and ground states, re-
spectively, and c, y, and k label the conduction bands, va-
lence bands, and k vectors of the quasiparticle states. a

y
ck

and ayk are the operators corresponding to the creation of
an electron and a hole, respectively. The coefficients Acyk
contain the information about electron-hole correlation and
the spatial nature of the excited state to which jE� corre-
sponds. We are interested in such linear superpositions of
vertical transitions, because the momentum of the optical
photon absorbed by the system is small compared to the
size of the first Brillouin zone (and hence, we need only be
concerned with vertical transitions for zero temperature);
furthermore, the intensity of light in the experiments we
aim to explain is small enough so that one-photon absorp-
tion processes are dominant (as opposed to higher-photon
processes).

The coefficients Acyk satisfy the following secular equa-
tion known as the Bethe-Salpeter equation (BSE) [11]:
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where the �EQP� are the quasiparticle energies, i.e., the
energies required to add or subtract an electron. In prac-
tice, we compute these quasiparticle energies in the GW
approximation [12,13], which has been shown to yield ac-
curate results for a wide variety of semiconductors and
insulators. V is the energy of the coupled electron-hole
excitation, and Kc0y0k0

cyk describes the scattering of an elec-
tron hole in the configuration cyk to the configuration
c0y0k0 via the Coulomb interaction. The kernel Kc0y0k0

cyk is in
general a complicated expression which may be expressed
as an infinite sum over irreducible Feynman diagrams or
as a sum of functional derivatives of the Hartree energy
and electron self-energy with respect to the single-particle
Green’s function. We take K � 2Kx 1 Kd , which is the
appropriate expression for spin-singlet, optically excitable
states [11,14]. Kx is the exchange interaction and Kd is the
attractive, screened direct Coulomb interaction between
electron and hole; both can be evaluated from a knowledge
of the quasiparticle wave functions and screened Coulomb
interaction [6].

Once the Bethe-Salpeter equation [Eq. (2)] is solved,
we may use the coefficients A

�s�
cyk and the energies Vs to

compute both the excitonic wave functions in real space,
Cs�r , r 0�, and the optical absorption spectrum, e2�v�.
They are given by (in atomic units)

e2�v� �
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(where V and ê are the velocity operator and the polariza-
tion vector, respectively), and

Cs�re, rh� �
X
cyk

A
�s�
cykfck�re�f�

yk�rh� . (4)

The quasiparticle energies of a-quartz calculated in the
GW approximation are shown in Fig. 1. We note that
the nearly direct gap at G is opened up significantly from
the LDA value of 5.6 eV to a value of 10.1 eV. The top
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FIG. 1. Calculated quasiparticle band structure of a-quartz in
the GW approximation.
2614
twelve valence bands correspond to p-like oxygen lone-
pair states. The bottom conduction bands have both silicon
and oxygen s and p characters.

a-quartz is birefringent, i.e., the optical constants for
rays parallel to the hexagonal plane are different from those
perpendicular to the plane. In this work, we are concerned
with the perpendicular ray, the so-called “ordinary ray,”
which is the one used in experiment [1]. We therefore take
our polarization vector ê in our expression for e2�v� [see
Eq. (3)] to be in the hexagonal plane.

In previous calculations of the direct kernel Kd for other
materials, the screening has been computed in the random
phase approximation (RPA) ignoring exciton effects, i.e.,
ignoring the fact that the virtual hole and electron inter-
act. The RPA screening has worked quite well for small
and moderate-size band gap semiconductors. In a-quartz,
however, excitons may have a significant effect on the di-
electric screening since a-quartz is a wide band gap in-
sulator with a large excitonic binding energy. Since such
effects are ignored in the RPA dielectric function, we need
to use the following expression instead, which takes into
account the virtual electron-hole interaction and is a better
approximation to the screening than the RPA:

xRPA1ex � 2
X
s

1
V3

s

É X
cyk
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cyk�ckjê ? Vjyk�

É2
. (5)

Here xRPA1ex is the macroscopic polarizability computed
with exciton effects included. Including the effects of local
fields, we get a macroscopic dielectric constant of 2.0, in
the case of RPA, and 2.44, in the case of RPA 1 excitons.
The latter is in excellent agreement with the experimental
value of 2.38 [15].

Since solving the excitonic coefficients Acyk requires
knowledge of the dielectric screening xRPA1ex, and
vice versa, the BSE together with Eq. (5) is a system of
equations that needs to be solved self-consistently by an
iterative scheme. Each iteration consists of a calculation
of x �n�, given an approximate value of the coefficients

A
�n�
cyk. The dielectric screening is then used in the BSE

to compute an updated set of coefficients A
�n11�
cyk , which

are substituted into Eq. (5) to obtain an updated screening
x �n11�. This process is iterated to convergence. If we
take as an initial guess, A

�n�
cyk � dcc0dyy0dkk0 with c0,

y0, and k0 running over all conduction, valence, and k
vectors, and x �0� � xRPA, then only two iterations are
required for a-quartz until convergence is reached. For
many semiconductor materials, such an elaborate iterative
scheme is however not required [6–10].

The large difference between the RPA and RPA 1

exciton dielectric constants effects a significant change in
the resulting optical spectrum as can be seen in Fig. 2(a).
We notice that the first two peaks are systematically shifted
to higher energy. In particular, the peak positions are
shifted by 0.5 eV towards the corresponding experimental
peaks, and the peak heights are appreciably lowered.
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FIG. 2. (a) Absorption spectrum with excitonic effects cal-
culated with RPA (dashed line) and with RPA 1 excitons
(solid line) dielectric screening. (b) Absorption spectrum with
excitonic effects calculated with RPA 1 excitons (solid line)
screening as compared to the interband theory (dot-dashed line).
Experimental data are given by the dashed line.

In Fig. 2(b) we plot the spectrum from 5 to 20 eV. The
positions of the four peaks computed theoretically are lo-
cated at 10.1, 11.3, 13.5, and 17.5 eV, in excellent agree-
ment with the experimental values of 10.3, 11.7, 14.0,
and 17.3 eV. The first two peaks are clearly excitonic
in nature, since the absorption without excitonic effects
is nearly featureless in the interval from 0 to 15 eV. The
third and fourth peaks, if compared to the interband tran-
sition spectrum, show a strong excitonic component. This
resolves the long-standing controversy over the nature of
these peaks, which, being excitonic in nature, cannot be
explained by interband transitions.

From the eigenvalues Vs obtained from diagonalizing
the BSE, we compute the density of excitations, Dex�v� �P

s d�v 2 Vs�, which we compare directly to the JDOS,
Djdos�v� �

P
yck d�v 2 E

QP
ck 1 E

QP
yk �, i.e., the density

of excitations with the electron-hole interaction turned off.
These results are plotted in Fig. 3. We note that both are
quite similar. This leads us to conclude that the sharp
peaks in the optical absorption are due to enhanced os-
cillator strength of transitions to the excitonic states. The
enhancement arises from the fact that in certain excitations
the electron and hole are highly correlated and form bound
or resonance states.
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FIG. 3. Calculated density of excitons (solid line) and inter-
band JDOS (dashed line).
We use Eq. (4) to look at the spatial nature of the
excitonic wave functions for select excitations. To illus-
trate such excitations, we place the electron at a fixed point
close to one of the oxygen atoms, and plot the hole proba-
bility density on the �11̄00� plane. Noting the form of
Eq. (4) and the oxygen p-like character of the top valence
bands, we expect a plot arranged in this way to show local-
ized lone-pair p orbitals on the oxygen atoms modulated
by an envelope function which characterizes the extent of
the exciton. Figure 4(a) shows the exciton of the first peak
in Fig. 2(b). We note that it is a highly correlated electron-
hole state with a small size not exceeding 2–3 bond
lengths, and with a high electron-hole overlap probability
which gives rise to a large absorption strength. Since the
optical dipole matrix element depends strongly on the
degree of localization of the excitation and becomes larger
the more localized the excitation, the exciton associated
with the first peak is very spatially localized as expected.
These states however are located just at the quasiparticle
continuum edge and hence, technically, they should be
considered as resonant states within the accuracy of our
calculation.

Figure 4(b) shows the exciton corresponding to the sec-
ond peak. It is more delocalized than the exciton of the
first peak. It is fairly extended along the (0001) direction,
as can be seen by the fact that we get nearly undimin-
ished intensity on certain oxygen sites that are many bond
lengths away from the fixed electron.

From the solutions of the BSE, we actually find that the
lowest eigenvalue state is at a significantly lower energy
than the first peak at 10.1 eV. It however has very weak
oscillator strength and therefore does not give rise to a
peak in the optical spectrum. Its energy is 8.4 eV, 1.7 eV
lower than the minimum direct band gap. It is therefore
a strongly bound exciton. However, for this state, there
is very little overlap between the electron and hole and
hence a small optical oscillator strength for transitions to
this state.

In conclusion, we succeed in calculating from first prin-
ciples the optical absorption spectrum of a-quartz to 10 eV
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FIG. 4. A log plot of the hole probability density with the
electron placed at 1 of (a) the first peak and (b) the second
peak in the optical spectrum. The plot is in the (110) plane.
The diamonds correspond to silicon atoms and the squares to
oxygen atoms. The scale is in units of the lattice constant.
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above the absorption threshold. The peak positions and
relative peak heights are in excellent agreement with ex-
periment. We gain insight into the physical and spatial
natures of the excitons, finding two singlet excitons below
or near the quasiparticle gap: one charge-transfer, “dark”
exciton, and one “bright” exciton at 10.1 eV which gives
rise to the first observed peak. The second observed peak is
also attributable to a resonant exciton whose spatial nature
is very extended along the (0001) direction. By compar-
ing the full spectrum with the nearly featureless absorption
spectrum computed neglecting excitonic effects, we con-
clude that all four peaks in the experimental spectrum are
dominantly excitonic in nature and cannot be explained by
interband transitions alone. Finally, we discover that ex-
citon effects play an important role not only in the shape
of the final absorption spectrum but also in the value of
the static dielectric constant. We have performed the first
ab initio calculation of the dielectric constant of a-quartz
including electron-hole effects and obtained a value in ex-
cellent agreement with experiment. This effect is expected
to be important also in the static dielectric constant of
other wide band gap materials in which exciton effects
are large.
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